X-Phi and Carnapian Explication
نویسندگان
چکیده
The rise of experimental philosophy (x-phi) has placed metaphilosophical questions, particularly those concerning concepts, at the center of philosophical attention. X-phi offers empirically rigorous methods for identifying conceptual content, but what exactly it contributes towards evaluating conceptual content remains unclear. We show how x-phi complements Rudolf Carnap's underappreciated methodology for concept determination, explication. This clarifies and extends x-phi's positive philosophical import, and also exhibits explication's broad appeal. But there is a potential problem: Carnap's account of explication was limited to empirical and logical concepts, but many concepts of interest to philosophers (experimental and otherwise) are essentially normative. With formal epistemology as a case study, we show how x-phi assisted explication can apply to normative domains.
منابع مشابه
Carnapian explication, formalisms as cognitive tools, and the paradox of adequate formalization
Explication is the conceptual cornerstone of Carnap’s approach to the methodology of scientific analysis. From a philosophical point of view, it gives rise to a number of questions that need to be addressed, but which do not seem to have been fully addressed by Carnap himself. This paper reconsiders Carnapian explication by comparing it to a different approach: the ‘formalisms as cognitive tool...
متن کاملCarnapian Explication : The Basics and a Canonical Example
The task of explication consists in transforming a given more or less inexact concept into an exact one or, rather, in replacing the first by the second. We call the given concept (or the term used for it) the explicandum, and the exact concept proposed to take the place of the first (or the term proposed for it) the explicatum. The explicandum may belong to everyday language or to a previous s...
متن کاملNon-homogeneous continuous and discrete gradient systems: the quasi-convex case
In this paper, first we study the weak and strong convergence of solutions to the following first order nonhomogeneous gradient system $$begin{cases}-x'(t)=nablaphi(x(t))+f(t), text{a.e. on} (0,infty)\x(0)=x_0in Hend{cases}$$ to a critical point of $phi$, where $phi$ is a $C^1$ quasi-convex function on a real Hilbert space $H$ with ${rm Argmin}phineqvarnothing$ and $fin L^1(0...
متن کاملOn $Phi$-$tau$-quasinormal subgroups of finite groups
Let $tau$ be a subgroup functor and $H$ a $p$-subgroup of a finite group $G$. Let $bar{G}=G/H_{G}$ and $bar{H}=H/H_{G}$. We say that $H$ is $Phi$-$tau$-quasinormal in $G$ if for some $S$-quasinormal subgroup $bar{T}$ of $bar{G}$ and some $tau$-subgroup $bar{S}$ of $bar{G}$ contained in $bar{H}$, $bar{H}bar{T}$ is $S$-quasinormal in $bar{G}$ and $bar{H}capbar{T}leq bar{S}Phi(bar{H})$. I...
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کامل